Weighted Non-linear Compact Schemes for the Direct Numerical Simulation of Compressible, Turbulent Flows

نویسندگان

  • Debojyoti Ghosh
  • James D. Baeder
چکیده

A new class of compact-reconstruction weighted essentially non-oscillatory (CRWENO) schemes were introduced (Ghosh and Baeder in SIAM J Sci Comput 34(3): A1678–A1706, 2012) with high spectral resolution and essentially non-oscillatory behavior across discontinuities. The CRWENO schemes use solution-dependent weights to combine lower-order compact interpolation schemes and yield a high-order compact scheme for smooth solutions and a non-oscillatory compact scheme near discontinuities. The new schemes result in lower absolute errors, and improved resolutionof discontinuities and smaller length scales, compared to the weighted essentially non-oscillatory (WENO) scheme of the same order of convergence. Several improvements to the smoothness-dependent weights, proposed in the literature in the context of the WENO schemes, address the drawbacks of the original formulation. This paper explores these improvements in the context of the CRWENO schemes and compares the different formulations of the non-linear weights for flow problems with small length scales as well as discontinuities. Simplified oneand two-dimensional inviscid flow problems are solved to demonstrate the numerical properties of the CRWENO schemes and its different formulations. Canonical turbulent flow problems—the decay of isotropic turbulence and the shock-turbulence interaction—are solved to assess the performance of the schemes for the direct numerical simulation of compressible, turbulent flows.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact-reconstruction Weighted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws

Title of dissertation: COMPACT-RECONSTRUCTION WEIGHTED ESSENTIALLY NON-OSCILLATORY SCHEMES FOR HYPERBOLIC CONSERVATION LAWS Debojyoti Ghosh, Doctor of Philosophy, 2012 Dissertation directed by: Professor James D. Baeder Department of Aerospace Engineering A new class of non-linear compact interpolation schemes is introduced in this dissertation that have a high spectral resolution and are non-o...

متن کامل

Numerical simulation of turbulent compressible flows in a C-D nozzle with different divergence angles

Compressible gas flow inside a convergent-divergent nozzle and its exhaust plume atdifferent nozzle pressure ratios (NPR) have been numerically studied with severalturbulence models. The numerical results reveal that, the SST k–ω model give the bestresults compared with other models in time and accuracy. The effect of changes in value ofdivergence half-angle (ε ) on the nozzle performance, thru...

متن کامل

Compact Finite Difference Schemes on Non-uniform Meshes. Application to Direct Numerical Simulations of Compressible Flows

In this paper, the development of a fourth(respectively third-) order compact scheme for the approximation of first (respectively second) derivatives on non-uniform meshes is studied. A full inclusion of metrics in the coefficients of the compact scheme is proposed, instead of methods using Jacobian transformation. In the second part, an analysis of the numerical scheme is presented. A numerica...

متن کامل

Compact Reconstruction Schemes with Weighted ENO Limiting for Hyperbolic Conservation Laws

The simulation of turbulent compressible flows requires an algorithm with high accuracy and spectral resolution to capture different length scales, as well as nonoscillatory behavior across discontinuities like shock waves. Compact schemes have the desired resolution properties and thus, coupled with a nonoscillatory limiter, are ideal candidates for the numerical solution of such flows. A clas...

متن کامل

A low numerical dissipation patch-based adaptive mesh refinement method for large-eddy simulation of compressible flows

This paper presents a hybrid finite-difference/weighted essentially non-oscillatory (WENO) method for large-eddy simulation of compressible flows with low-numerical dissipation schemes and structured adaptive mesh refinement (SAMR). A conservative flux-based approach is described, encompassing the cases of scheme alternation and internal mesh interfaces resulting from SAMR. An explicit centered...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2014